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ABSTRACT: It is likely that drug resistance evolves after trans- e |
formation. Exactly how these resistant cells arise is uncertain. This !
review outlines how the evolution of individual human cancers epiallele 1
. . . e . epiallele 2
may be inferred by comparing genomic variation from different epiallele 3
parts of the same tumor. The past of a tumor may help predict its epia::e:eg
responses to chemotherapy. :g;:“:l: 8
epiallele 7
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B INTRODUCTION

Resistance to chemotherapy is commonly observed, but the
mechanisms underlying drug resistance are uncertain and likely
to be diverse. One mechanism is tumor heterogeneity, by which
subsets of pre-existing resistant cells are already present before
chemotherapy is administered. The Codie—Goldman model
outlines how cell variants spontaneously arise or evolve durin;
the many cell divisions necessary to form a visible tumor.”
Instead of a homogeneous population of cells with the same
susceptibilities, tumors are more likely to be composed of hetero-
geneous populations of cells with different susceptibilities. The
surviving, more resistant variants are responsible for tumor
regrowth after chemotherapy.

Another postulated mechanism of chemoresistance is second-
ary to “cancer stem cells” (CSCs). In this model, a tumor is com-
posed of a hierarchy of self-renewing CSCs and their more
numerous non-CSC progeny that have more limited cell division
potential>* Chemotherapy may initially eliminate the more
numerous non-CSC progeny, but regrowth occurs because CSCs
are intrinsically more resistant and not eliminated, and subse-
quently produce more non-CSC progeny.

There is evidence to support both mechanisms of chemo-
resistance. Tumor heterogeneity is a well-known phenomenon,’
and the purpose of this review is to outline a new approach to
address how one can characterize CSCs and tumor heterogeneity
in primary human tumors. This approach translates molecular
phylogeny techniques to reconstruct ancestral trees of individual
human cancers from passenger DNA methylation changes.

B HUMAN CANCER ANCESTRAL TREES

Ancestral trees help illustrate the evolutionary relationships
between CSCs and tumor heterogeneity (Figure 1). An ancestral
tree has four basic parts: a start or common ancestor, present day
individuals, and no longer present individuals, which are either
ancestors or dead ends (Figure 1A). Translated to an individual
human cancer, the start is the first transformed cell, and the
tumor contains present day cells. In between transformation and
the present day tumor cells are no longer present cancer cells,
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which are either ancestors or dead ends.® All cancer cells (past
and present) must fit somewhere on this tree. Conveniently,
CSCs fit the definition of ancestors (with present day progeny)
whereas dead ends are non-CSCs, including “CSCs” that failed to
express their potential. Because all trees have ancestors, all
cancers must contain CSCs. CSCs retrospectively defined by
ancestry may differ from CSCs or tumor initiating cells experi-
mentally defined by the prospective ability to form xenografts in
immunocompromised mice. Nevertheless, ancestors share the
tumor propagating properties of CSCs because they were able to
undergo self-renewal ever since transformation.

Tumor heterogeneity naturally arises along an ancestral tree
because replication errors accumulate within a genome with each
division. Starting from the first transformed cell and its genome,
subsequent progeny (including CSCs) and their genomes will
become increasingly more different from replication errors. The
amount of heterogeneity in a present day tumor depends both on
the mitotic age of the tumor (numbers of divisions since trans-
formation or the last clonal expansion) and the numbers of long-
lived CSC lineages. Tumor heterogeneity is therefore intrinsi-
cally linked to CSC frequencies. A relatively homogeneous tumor
would have a short mitotic age (i.e., a recent clonal expansion)
and few CSCs, whereas a more heterogeneous tumor would have
a greater mitotic age and many CSCs.

B INFERRING CANCER ANCESTRAL TREES

A goal of molecular phylogeny has been the development of
methods and measurements to distinguish between candidate
ancestral trees. Molecular clocks (homologous sequences that
differ between individuals) are commonly used to infer ancestry.”
Essentially, the greater the time since a common ancestor, on
average the greater the numbers of differences between their
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Figure 1. Human somatic cell ancestral trees. (A) A tree has four basic
cell types. (B) Two possible cancer trees illustrating the ultimate cancer
common ancestor (first transformed cell) and more recent common
gland ancestors. Branch lengths and therefore diversity increase with
time after transformation. The upper tree illustrates cancer glands
maintained by multiple long-lived CSC lineages whereas the lower tree
has only a single long-lived CSC lineage per gland. Although the times
since the first transformed cell are the same when comparing cells
between the glands, the glands from the upper tree will be much more
diverse because random replication errors can independently accumu-
late in the multiple CSC lineages.

genomes (“molecular clock hypothesis”). For example, there are
more differences between chimpanzees and humans (about 1
base per 100) than between humans (about 1 base per 1,000)
corresponding to a divergence of ~$ million years ago between
chimps and humans, and the more recent emergence of modern
humans out of Africa ~50,000 years ago. Therefore, it is possible
to infer something about the past of a population by measuring
and comparing the genomes of present day cells or individuals.

It should be possible to distinguish between the human cancer
ancestral trees in Figure 1B because a bushy tree with many CSCs
should accumulate more genomic diversity compared to a tumor
with very rare ancestors or CSCs. Variation that arises in non-
CSCs cannot accumulate and is lost in these dead ends. A diverse
population contains many long-lived lineages, favoring the evolu-
tion of variants (CSCs and their progeny) with different drug
susceptibilities.

B MEASURING SOMATIC CELL GENOMIC VARIATION

The time frame for somatic cell evolution is relatively short
compared to species evolution, and it is difficult to use DNA
sequences as molecular clocks because somatic mutations are
relatively rare. For example, the frequencies of clonal cancer mu-
tations (present in all cells) are typically lower than one per
100,000 bases,®® and frequencies of new variant mutations that
arise in individual cancer cells after transformation are likely to be
even lower. To overcome this problem, it is also possible to
examine epigenetic genomic variation such as DNA methylation
at CpG sites because the 5’ to 3’ order of methylation is usually
copied after DNA replication. Methylation patterns are quite
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Figure 2. A strategy to measure and analyze colorectal adenocarcinoma
genomic diversity. (A) Individual adenocarcinoma glands can be isolated
from fresh CRC specimens. The relative diversities of these neighboring
cells can be measured by sampling multiple epialleles. (B) Example of an
epigenetic molecular clock with 9 CpG sites on the X chromosome. PCR
primer sites are underlined. In theory, a single ' to 3’ pattern (circles
represent CpG sites with filled circles being methylated) in the first
transformed cell will initially be similar in all cancer cells, but will
subsequently randomly drift with time from independent replication
errors. The amount of drift can be quantified with a pairwise distance
(PWD) that counts the numbers of differences between homologous
sites. (C) Sample data? illustrating comparisons within and between
glands from opposite sides of the same cancer. Eight epialleles are
sampled from each cancer gland, and usually multiple glands are sampled
(not illustrated). Average PWDs within glands infer both numbers of
CSCs and times since the last common gland ancestor. Average PWDs
between glands infer times since transformation since these cells
probably last shared common ancestors around the time of transforma-
tion. The bottom cancer is more diverse and therefore probably
removed later after transformation than the upper cancer.
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diverse in human cancers at certain CpG rich loci,'® and the §' to
3’ order of DNA methylation can be read with conventional
DNA sequencing after bisulfite treatment.""

DNA methylation has a number of regulatory roles, and pat-
terns in certain genes may reflect functional selection. However,
many genes are not expressed in a tissue of interest, and DNA
methylation in these regions may reflect passenger of neutral
variation. Certain of these CpG rich regions also appear to accu-
mulate methylation with aging in mitotic tissues like the colon,
and therefore this methylation may represent neutral replication
errors. The variation of these passenger methylation patterns can
potentially be used as “epigenetic molecular clocks”, with the
numbers of CpG site differences a function of the numbers of
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divisions since a common ancestor.lepairwise distance (PWD)
can be used to count the number of CpG methylation differences
between any two alleles, with average PWDs summarizing the
diversity or heterogeneity of larger tumor populations (Figure 2).
PWD can be used as a surrogate for mitotic age or the numbers of
divisions since two genomes shared a common ancestor.

B AN EXPERIMENTAL STRATEGY TO UNRAVEL HUMAN
TUMOR EVOLUTION

There are a number of barriers to reconstructing human
cancer ancestral trees because little is known about the progres-
sion of individual human cancers. Genetic and epigenetic varia-
tion may arise by a number of mechanisms, and error rates may
be variable and depend on the microenvironment. How does one
adequately sample the variation in a billion cell tumor and then
use this information to reconstruct its tree?

To simplify this process, one strategy is to sample the variation
within a single cancer gland (Figure 2A). Glands are small
isolated groups of 2,000 to 10,000 adjacent cells, and a relatively
easier question to ask is whether neighboring cells are more
related than distant cells. Human colorectal adenocarcinomas
consist of many such glands, which can be isolated intact from
fresh specimens with an EDTA solution."* DNA from each gland
is extracted and bisulfite treated, PCR products at an epigenetic
molecular clock are cloned into bacteria, and then multiple
clones are sequenced (Figure 2A). This process is equivalent
to the sampling of genomes from individual cancer cells. Typi-
cally multiple patterns are present within a gland, and this
heterogeneity can be numerically summarized by its PWD, which
should on average increase with greater numbers of divisions
since a common ancestor (Figure 2B). A new gland formed from
a recent clonal expansion would have little diversity, but its
diversity should progressively increase with time if the gland is a
stable population maintained by multiple long-lived lineages
(Figure 1B).

The heterogeneity of a single gland is relatively uninformative,
but patterns emerge when multiple different glands from the
same tumor are compared (Figure 2C). Essentially we try to ask
whether the evolutionary histories of multiple glands within a
single tumor are similar or different. At one extreme, all of the
glands within an adenocarcinoma share similar histories because
they are founded by similar cells. At the other extreme, each gland
may have a different history molded by the “chaos” of genomic
instability and relentless cycles of stepwise selection in response
to its unique microenvironment.

Consistent with the idea that human cancers are removed
at different times after transformation, passenger methylation
pattern diversities were different between individual human
CRCs."? Presumably, more diverse tumors were present longer
compared to less diverse tumors, but there was no consistent
relationship between tumor passenger methylation pattern di-
versity and tumor diameter.'” Remarkably, methylation pattern
diversities in multiple glands from the same human CRC are
usually similar."'* This observation suggests that the ancestries
of the different glands within the same CRC are also similar. Two
possible scenarios can produce uniform tumor gland ages. In one
scenario, selection is so frequent that none of the glands can
become very diverse because the mitotic age of a gland is
constantly reset back to zero by clonal evolution when a single
most fit cell attains dominance over neighboring cells within the
gland. In another scenario, selection is so infrequent that all of the
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Figure 3. PWDs within glands are nearly as great as PWDs between
glands from opposite cancer sides. That PWDs within the glands are
smaller than between glands may reflect that, even with high frequency
CSCs, many cells within a gland are closely related daughter cells. The
scatter of values may be attributed to the stochastic nature of replication
errors and CSC renewal.

glands within a single tumor become progressively more diverse
after transformation.

It is possible to distinguish between these two scenarios
by using tumor topography as a surrogate for ancestry. What is
needed is a method to compare the mitotic age of a gland (time
since a last common gland ancestor) with the mitotic age of its
tumor (time since transformation). Is a gland as old as its tumor?
It is possible to infer the mitotic age of a tumor by comparing
genomes from cells isolated from opposite cancer sides. Al-
though exceptions are possible, cancer cells from opposite sides
of an adenocarcinoma are likely to be among the least related
cells (i.e.,, have the greatest numbers of intratumoral genomic
differences), with last common ancestors arising around the time
of transformation.

This strategy can be employed by sampling tumor glands from
opposite cancer sides (Figure 2C). Instead of comparing PWDs
or methylation patterns within a gland, we now compare PWDs
between glands from opposite cancer sides. Are cells from oppo-
site cancer sides significantly less related than neighboring cells
within a small cancer gland? If cancer glands are unstable, rapidly
evolving populations, then cells within a gland should be much
more related than cells from opposite tumor sides.

By comparing epigenetic molecular clocks within and between
glands from the same human CRC," it appears that individual
glands are typically nearly as diverse or “old” as their tumors
(Figure 3). The implication is that the glands in a single cancer
were formed shortly after transformation and that very little
selection or clonal evolution has occurred in the intervals be-
tween transformation and surgical removal. Most CRCs (10 of
12 analyzed tumors) appear to be relatively simple single clonal
expansions. © Moreover, simulations based on a number of
assumptions are more consistent with relatively frequent long-
lived lineages or CSCs within individual cancer glands. Simplis-
tically, if CSCs were extremely rare (fewer than 1 per 100,000
cells), then individual small glands would be relatively homo-
geneous populations because nearly all of the cells within the
gland would be short-lived non-CSCs and related to a very recent
common gland ancestor. Simulations infer that the high diver-
sities present in small cancer glands were consistent with
between 4 and 1,000 CSCs per 8,000 cell glands.13
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Much is known about tumor evolution, but very little is known
about how any given individual cancer evolved. Therefore, tumor
specific ancestries encoded by methylation patterns are uncer-
tain. Furthermore, this analysis of tumor methylation patterns
does not reveal information about clonal expansions prior to
transformation. Modeling and simulations™>~ "> suggest that the
PWD variations within and between glands (Figure 3) can be
attributed to the stochastic nature of replication errors and CSC
renewal. Additional data and better algorithms are needed to
better infer human cancer ancestries. Along these lines, an initial
analysis of partial DNA sequencing of multiple individual cancer
genomes from the same breast tumor also favors a relatively rapid
clonal expansion rather than gradual stepwise progression.'®

B SELECTION AND SURVIVAL OF THE FITTEST

Selection is a mysterious parameter that is difficult to measure.
It is commonly assumed that selection can exploit even small
difference between cells, resulting in relentless cycles of clonal
dominance and further progression by increasingly more fit cells.
If selection efficiently optimized fitness, it would be difficult for
heterogeneity to accumulate within small glands because less fit
variants would be quickly replaced by newer, fitter variants.
Therefore, the high passenger methylation diversity of individual
CRC glands is somewhat surprising because it implies that
selection and clonal evolution does not frequently recur after
transformation. Cells with different genotypes can also be found
intermixed in breast cancers,'” illustrating the potential weakness
of selection to confer even local clonal dominance. Of note,
frequent selection would mimic infrequent CSCs because selec-
tive sweeps cause bottlenecks that reduce diversity and numbers
oflong-lived lineages. The relatively high gland passenger methy-
lation pattern diversities (nearly as diverse as their tumors) imply
that single cancer cells do not commonly acquire selective advan-
tages sufficient to even allow focal sweeps or clonal dominance
over neighboring cells within small glands.

Selection is local in the sense that direct competition occurs
between neighboring cells. A cell may acquire a selective advan-
tage over another tumor cell, but such an advantage is moot
unless that other cell is its immediate neighbor. A potential para-
dox is that, within a gland, the closest neighbors are often siblings,
yet competition or selection would be least efficient among such
nearly identical cells. Perhaps the physical constraints on selec-
tion imposed by a glandular architecture are responsible for the
maintenance of the high diversity and infrequent selection
inferred within human adenocarcinomas. Along these lines, it
has been noted that a crypt architecture itself acts as a tumor
suppressor mechanism.'® However, weak selection would also
facilitate the random accumulation of drug-resistant phenotypes,
which may not confer any selective value until chemotherapy is
administered.

B EVOLUTION OF DRUG RESISTANCE

Although the evolutionary histories inferred from passenger
methylation patterns are uncertain, it is easy to see how drug
resistance may evolve within a tumor population after transfor-
mation. One type of progression that can produce “flat” cancers
with similar ages throughout a tumor is one that starts with a very
rapid initial clonal expansion." Instead of stepwise evolution, the
first transformed cell may already have most of the capabilities
needed for tumor formation.”® The ancestry that emerges from
the sampling and analysis of passenger methylation patterns at a
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Figure 4. Estimated numbers of CSCs per gland are lower for MMR
deficient CRCs. Clinical outcomes for patients with MMR deficient
CRCs are generally better, suggesting fewer CSCs (and therefore lower
overall cancer diversity) correlate with better survival.

limited number of epigenetic molecular clocks is consistent with
Gompertzian growth,”" where tumors initially grow quickly and
then slow such that the growth of clinically detectable tumors is
relatively slow. A rapid expansion after transformation would
tend to generate tumors with relatively uniform diversities or
ages because most glands and lineages are created shortly after
transformation. Initially homogeneous glands will subsequently
become diverse as cell division continues, with minimal growth if
cell division is largely balanced by cell death. The inferred ances-
tries of human CRCs (many long-lived CSC lineages, little selec-
tion) appears to maximize the potential for cancer population
diversity, increasing the probability that variant cells resistant to
chemotherapy will arise after transformation. That cancers are
relatively uniform single clonal expansions helps validate the
common practice of basing therapies on the analysis of small
random biopsies from large tumors.

Tumor heterogeneity may play an important role in determin-
ing response to therapy. Newer, targeted therapeutics are often
characterized by promising responses in tumors that lack certain
mutations (such as cetuximab with wild type KRAS CRCs™®), but
relapses are common. Potentially heterogeneous tumors are
more prone to relapse because of greater probabilities of contain-
ing resistant cells. However, outcomes may also be better with
more heterogeneous tumors because they may represent rela-
tively older and therefore biologically more stable or less agg-
ressive tumor populations. It may be that more homogeneous
and therefore newer clonal expansions have poorer outcome
because they are biologically more aggressive and come to clinical
attention sooner. The relationships between tumor heteroge-
neity and clinical outcome are correlations that remain to be
characterized.

An interesting clinical observation is that patients with CRCs
with higher mutation rates due to loss of DNA mismatch repair
(MMR deficient or microsatellite instability high) tend to have
better outcomes.”® It is possible that chromosomal instability
(CIN**) more effectively generates drug resistant variants com-
pared to MMR deficiency. Interestingly, estimated numbers of
CSCs per cancer gland were fewer in MMR deficient CRCs
compared to MMR proficient CRCs (Figure 4). Although the
numbers of examined cancers are small,"® potentially MMR
deficient CRC:s intrinsically have fewer CSCs per gland. Another
possibility is that the 100- to 1000-fold higher point mutation
rates in MMR deficient CRCs*® allow for more genetic variation
and selection, and therefore fewer long-lived lineages. In view of
the better clinical outcomes of MMR deficient CRCs,** and
because mutations tend to be neutral or deleterious,®® one
possibility is the lower passenger methylation pattern diversities
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are a consequence of greater negative rather than positive
selection as cancer cells become less fit after transformation.
However the true effects of most mutations in a cancer genome
are uncertain. These preliminary data suggesting that less fre-
quent CSCs or long-lived lineages (and less tumor hetero-
geneity) may be associated with better clinical outcomes.

B SUMMARY

This review has attempted to describe methods and a strategy
to unravel the evolution of individual human tumors by measur-
ing the genomic variation in cells from different parts of the same
tumor. The approach is analogous to studies in population
genetics that seek to infer the histories of present day individuals.
There are many possible ways a cancer may evolve, and the deve-
lopment of methods to infer the past of each tumor may help
guide the treatment of individual cancers. The ability to measure
cancer populations before and after therapy may also help
unravel exactly why therapies fail. Advances in sequencing will
make it increasingly possible to sample and compare multiple
genomes from the same tumor. There are multiple ways to
measure tumor heterogeneity (genetic, epigenetic, chromosomal
structure), and potentially any hereditable variation may encode
the past. The ancestries of individual human tumors are likely
encoded within their genomes, awaiting to be read with appro-
priate algorithms and sampling schemes.
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